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Abstract: Post-problem reflective tutorial dialogues between human tutors and 
students are examined to predict when the tutor changed the level of abstraction 
from the student’s preceding turn (i.e., used more general terms or more 
specific terms); such changes correlate with learning. Prior work examined 
lexical changes in abstraction. In this work, we consider semantic changes. 
Since we are interested in developing a fully-automatic computer-based tutor, 
we use only automatically-extractable features (e.g., percent of domain words 
in student turn) or features available in a tutoring system (e.g., correctness). We 
find patterns that predict tutor changes in abstraction better than a majority 
class baseline. Generalisation is best-predicted using student and reflection 
features. Specification is best-predicted using student and problem features. 

Keywords: intelligent tutoring systems; ITS; natural language processing; 
NLP; abstraction changes; reflective tutorial dialogues; semantic changes; 
learning technologies. 
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Learning Research and Development Center where she has developed and 
tested four major dialogue-based learning systems in laboratory and classroom 
settings. Her current research focus is on adapting content according to user 
needs with an emphasis on adapting the content presented during tutorial 
dialogue to match a student’s level of mastery. 

 

1 Introduction 

One-on-one human tutoring has been shown to be an effective method of instruction 
(Bloom, 1984). Socio-cognitive theories attempt to explain this success in terms of the 
interactivity occurring through the dialogue (Chi et al., 2001; Boyer et al., 2010). 
Although there is abundant empirical evidence that interaction between a student and 
tutor (or student and peer) supports learning, much less is known about the specific 
features of effective instructional dialogue. This level of specificity is needed to plan 
tutorial dialogues in intelligent tutoring systems (ITS). 

Researchers in cognitive science and ITS have made significant progress in 
identifying specific features of human tutorial dialogue that predict learning (Chi et al., 
2001, 2008; Forbes-Riley and Litman, 2007; Ward et al., 2009). For example, certain 
types of discourse relations have been shown to be beneficial for learning (Ward et al., 
2009; Katz and Albacete, 2013). Earlier work using lexical cohesive ties was found to be 
correlated with learning (Ward et al., 2009) and it was found to be possible to identify 
patterns in a human tutor’s use of some ties through the use of machine learning (Katz 
and Albacete, 2013). Cohesion is considered to be the connectedness of a text (Halliday 
and Hasan, 1976) and cohesive ties are the various forms of connectedness, such as 
synonymy and paraphrase. In this paper, we move beyond lexical relations and consider 
co-constructed discourse relations. Two relations in particular have been found to 
correlate with learning: tutor generalisation and tutor specification (Ward et al., 2009; 
Ward and Litman, 2007). Tutor generalisation occurs when the tutor repeats part of a 
student’s utterance, but at a higher level of abstraction. Tutor specification occurs when 
the tutor repeats part of a student’s utterance, but more concretely. Section 2.1 has 
examples of semantic generalisation and semantic specification. 

Inspired by the research above, we aim to develop a dialogue-based tutoring system 
that will automatically generalise or specify tutor turns, relative to preceding student 
turns. Our project started with a fully-automatic interactive post-problem reflective 
dialogue system for physics and modified the reflective dialogue system so that it 
simulates dialogue decision rules that we predict should improve student learning, 
relative to a control dialogue system that does not implement these rules. These rules are 
based on correlational analyses of features of tutorial interaction that predict learning, as 
measured by pretest to post-test gains. The system has been used to engage in interactive 
reflective dialogues with high school students after the students have solved introductory 
physics problems (Katz et al., 2013; Jordan et al., 2013b, 2013a). Previous work has 
shown that post-problem reflective dialogues are beneficial for student learning (Katz  
et al., 2003). To achieve the interactivity desired, we must identify when a computer tutor 
should generalise or specify based on when human tutors did so during reflective 
dialogues. In the current version of our system, this decision is made manually by the 
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authors of the dialogues. The work presented in this paper is the first step in beginning to 
automate the when decision-making. 

Other researchers are also developing or evaluating adaptive tutorial dialogue 
systems. Much of this research focuses on uncovering tutorial dialogue tactics (VanLehn 
et al., 2003; Pon-Barry et al., 2006). For example, researchers have had success 
developing tutors that adapt to students’ affective states (Forbes-Riley and Litman, 2011, 
2012; Aist et al., 2002). Adapting to these affective states involves providing additional 
feedback from the tutor that addresses the student’s affective state (e.g., giving feedback 
with a positive slant for poorly-performing studious students) (Dennis et al., 2012; Aist  
et al., 2002; Forbes-Riley and Litman, 2012, 2011). This feedback has led to increased 
persistence (Aist et al., 2002), learning gains over no feedback on affect (Forbes-Riley 
and Litman, 2011), and increased speed of learning (Forbes-Riley and Litman, 2009). 
Detecting these affective states includes such features as body language and facial 
expressions (D’Mello and Graesser, 2010; Woolf et al., 2009), lexical or dialogue 
features (D’Mello and Graesser, 2010; Forbes-Riley et al., 2012), response times (Beck, 
2004), audio or spoken features (Pon-Barry et al., 2006; Drummond, and Litman, 2010; 
Forbes-Riley et al., 2012), and student features (Forbes-Riley et al., 2012). 

Researchers have also examined adapting pedagogical strategies to individual 
students. In determining the level of interactivity, it is important to consider the skill level 
of the student in comparison to the difficulty of the content that is to be learned (VanLehn 
et al., 2007). For content that is at the current skill level of the student, or easier, high 
levels of interactivity (e.g., dialogue with tutor) provide no benefit over low or no 
interactivity (e.g., reading a canned text). For content that is just above the student’s skill 
level (i.e., material the student has not yet mastered, but is ready to learn), then higher 
levels of interactivity are beneficial (VanLehn et al., 2007). Determining skill level can 
be gauged with a pretest and monitored through interactions with the tutoring system 
(Corbett and Anderson, 1994; Pavlik et al., 2009). Interactivity can be at the problem 
level, where the system will decide which problem to give the student next (Corbett and 
Anderson, 1994). Finer-grained levels of interactivity decisions (e.g., how intrusive to 
make hints) can be made using student demographic, temporal, contextual, and 
performance features (Chi et al., 2010; Chi, 2009; Arroyo et al., 2000). 

Students may engage in behaviour that is not conducive to learning, such as ‘gaming 
the system’, where students obtain correct answers by taking advantage of the tutoring 
system’s feedback and help (Baker et al., 2004b). Addressing this behaviour has been 
shown to improve learning (Baker et al., 2006) and has been successfully detected with 
models using student performance, contextual, and temporal features (Walonoski and 
Heffernan, 2006; Baker et al., 2004a). However, not all students who take advantage of 
the tutoring system’s help are doing so in a manner that hinders learning (Shih et al., 
2008). Distinguishing between helpful and harmful uses of a tutoring system’s help can 
also be done through the use of a model that uses temporal features (Shih et al., 2008). 

Finally, prior work on the same data as used in this paper examined lexical changes in 
abstraction from student turns to tutor turns (Lipschultz et al., 2011). The authors 
identified important features and feature groups that were helpful in predicting tutor 
changes in abstraction. For example, they found that information from the dialogues (e.g., 
which reflection question the student was answering) are most useful for the prediction 
tasks, and that problem-solving features (e.g., how many mistakes the student made while 
solving the problem) and student features (e.g., gender) are not as important. This work 
goes beyond lexical changes in abstraction and looks at semantic changes. 
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Following from the research above, we aim to develop a tutoring system that 
automatically adapts tutor turns to generalise or specify relative to preceding student 
turns. The work presented here takes the first step towards such a system. Others who are 
also developing interactive tutorial systems have found certain types of features 
beneficial for identifying when to change the level of interactivity (e.g., adapting to 
emotional states or eliciting information from a learner versus telling the students that 
information the information); we used these features as guidance when we selected our 
features. Research into emotion detection in tutorial dialogue systems found that dialogue 
context information, such as the number of main questions answered or the number of 
characters in the student’s turn, correlate with various emotional states (D’Mello and 
Graesser, 2006). Others have found demographic information to be important for 
determining hint interactivity (Arroyo et al., 2000). Student performance and student 
dialogue information have been used in research determining when a tutor should elicit 
information from the student versus telling them (Chi et al., 2011a, 2011b). 

We explore how useful each feature is in predicting generalisation and specification 
by training two decision trees (one for each discourse relation) per feature. In addition to 
looking at the prediction results, we examine the trees to gain intuitions about why the 
tutor may have generalised or specified what the student had said. To further investigate 
feature relationships, we group related features and train decision trees on these feature 
sets. From these trees, we are able to identify possible rules for why the tutor generalised 
or specified and the emerging rules suggest plausible explanations for tutor generalisation 
and specification. Our results suggest that these features may be useful for predicting 
generalisation and specification and may be helpful for guiding generalisation and 
specification during natural-language dialogue generation. 

2 Corpus 

Our corpus is from a previous study (Katz et al., 2003) on the effectiveness of reflection 
questions after a physics problem solving session with the Andes physics tutoring system 
(VanLehn et al., 2005). Students taking introductory physics courses at the University  
of Pittsburgh were recruited. They took a physics pretest, with 9 quantitative and  
27 qualitative physics problems. All 36 problems were tagged by physics experts for 
knowledge components (KCs) that students must have in order to correctly answer the 
problem. For example, one knowledge component necessary for solving the problem 
shown in Figure 1 is “Tension in a cord or rope produces a force pulling in toward the 
center of the cord or rope”. Following the pretest, students studied workbook material 
developed for the experiment and received training on using Andes. 

Although there were three conditions in the experiment, we only focus on the Human 
Feedback condition since we are interested in building more interactive dialogues, which 
only this condition provides; see Katz et al. (2003) for complete details of all conditions. 
Students in each condition began by solving a basic mechanics problem in Andes. Each 
student’s tutor observed a student solving the problem from a computer in a remote 
location, and did not interact with the student. After completing the problem, students in 
the human feedback condition were presented with several deep-reasoning, ‘reflection 
questions’, which they were required to answer before moving on to the next Andes 
problem. The purpose of the questions was for students to reflect on the problem they had 
just completed and think about the concepts involved in solving that problem. After 
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typing their answer, students would begin a teletyped dialogue with their human tutor 
regarding their answer. This dialogue continued until the tutor was satisfied that the 
student understood the correct answer. Three to eight reflection questions were asked per 
problem solved in Andes. Each reflection question was tagged by the physics tutors for 
KCs that the students would need to know to correctly answer the question. There were 
12 problems in all. An example problem and the reflection questions associated with it 
can be found in Figure 1. 

Figure 1 Sample problem and the three reflection questions 

Andes problem: 
A rock climber of mass 55 kg slips while scaling a vertical face. Fortunately, her caribiner holds 
and she is left hanging at the bottom of her safety line. Find the tension in the safety line. 
Reflection questions: 
1 What minimum acceleration must the climber have in order for the rope not to break while 

she is rappelling down the cliff? (You do not have to come up with a numerical answer. Just 
solve for ‘a’ without any substitution of numbers). 

2 Suppose the maximum tension in the rope was 500 N. What would happen to the climber if 
she hung stationary on the rope? 

3 Suppose the climber were rappelling down the rope with a constant velocity equal to or less 
than the minimum acceleration found in the previous question. Would the rope still break? 

After the final problem’s reflection dialogues, students took a post-test that was 
isomorphic to the pretest and counterbalanced. The study found that students who 
answered reflection questions learned more than students who did not answer reflection 
questions. However, there was no significant difference between the human feedback 
condition and the condition with canned feedback to students’ answers to the reflection 
questions. 

There were 16 students in the human feedback condition (4 male, 12 female). Fifteen 
students participated in all 60 reflection question dialogues; one only participated in 53, 
yielding a total of 953 dialogues. There are a total of 2,218 student turns and 2,135 tutor 
turns in these dialogues. There is an average of 2.32 student turns and 2.24 tutor turns per 
dialogue. The minimum turns for a dialogue was 1, where the student answered the 
reflection question correctly and the tutor decided to move on to the next question or 
problem. Students answered some reflection questions incorrectly, and the tutor then 
engaged the student in dialogue to correct the student’s answer. The maximum number of 
dialogue turns was 56. 

Each subject was assigned to one of seven tutors. Since there were more students than 
tutors, some tutors worked with multiple students. No students knew their tutor prior to 
the study. The tutors had prior experience teaching physics in a classroom or one-on-one 
tutoring setting; some had done both. Additionally, students who discussed reflection 
questions with these tutors showed learning gains over the control condition where 
students did not interact with a tutor and solved more problems instead (Katz et al., 
2003). Tutors had opportunities to chat with the subjects before and after tutoring. Thus, 
the tutors and the subjects had the chance to get to know each other. 
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2.1 Annotation 

This corpus of human feedback condition data has been used in a number of other corpus 
studies examining the connectedness of text (Ward et al., 2009; Lipschultz et al., 2011; 
Katz and Albacete, 2013). We use data from the latest study, which examined  
co-constructed dialogue relations and their correlation with learning (Katz and Albacete, 
2013). The reflection dialogue corpus was tagged by human annotators for  
co-constructed discourse relations. For each turn, the annotators identified segments 
containing a discourse relation to a segment in the previous speaker’s turn, then tagged 
that segment with the relation identified. The annotators focused on two main discourse 
relations, generalisation and specification, and various subtypes – for example, the part: 
whole relation is a type of generalisation. 

2.1.1 Generalisation 

The generalisation dialogue relation occurs when the second speaker refers to a more 
general concept, principle, or value than one the first speaker referenced in their 
preceding turn. For example, in the following exchange, the tutor refers to speed and the 
student classifies speed as a scalar quantity (italics are added to highlight the relation): 

“Tutor: Since the question asked about SPEED, suppose we had found v_y to 
be negative. Should we include the minus sign when giving the speed? 

Student: I would say no because speed is scalar and doesn’t include 
direction.” 

Generalisation can also occur when the second speaker refers to a physics principle that 
explains, or is illustrated by, problem-specific content in the first speaker’s turn. For 
example, in the following exchange, the student explains her answer and the tutor offers 
the general principle about the relationship between acceleration and velocity when an 
object is slowing down: 

“Reflection question: The bullet is traveling to the right. What direction is its 
acceleration? 

Student: to the left because it is making the bullet slow down 

Tutor: Good–when something is slowing down, its acceleration has a 
component opposite to its velocity.” 

2.1.2 Specification 

The specification cohesive tie is the opposite of generalisation. It can occur when the 
second speaker refers to a more specific concept, principle, or value than the one that the 
first speaker referred to. For example, in the following exchange, the tutor asks for the 
forces on a climber, and the student names two types of forces: 

“Tutor: What are the forces on her? 

Student: her weight and the tension of the rope.” 
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Specification can also occur when the second speaker instantiates a principle or concept 
that the first speaker refers to. For example, in the following exchange, the student carries 
out the tutor’s directive to apply Newton’s Second Law to the current problem: 

“Tutor: Now use Newton’s Second Law and find [the climber’s] acceleration–a 
number and units; show me the symbols (the algebra). 

Student: 39/55 = a, a = .71 m/sˆ2 downwards.” 

2.1.3 Tagging 

Two annotators were each assigned a subset of the data to reduce duplicate tagging. The 
subsets were such that, combined, the entire data set was annotated. The annotators 
tagged segments of students’ and tutors’ dialogue turns for generalisation and 
specification. In addition, they tagged for particular types of generalisation and 
specification based on Rhetorical Structure Theory (Mann and Thompson, 1988), such as 
part:whole relations or member:set relations. See Katz and Albacete (2013) for more 
detail. They then checked the other annotator’s tags. Any disagreements were discussed 
and reconciled. Of the 2,135 tutor turns, 141 contained generalisation and 132 contained 
specification. While it is possible for a tutor to both specialise and generalise in a single 
turn, our corpus does not contain any instances. 

We use this tagged corpus to build models predicting the tutor’s next turn based on 
features described in Section 3. We focus on predicting when the tutor changed level of 
abstraction because, as we design a computer tutor, we have the ability to modify the 
computer tutor’s level of abstraction. Since students’ change in level of abstraction is 
harder to control, this is left for future work. In Section 4, we discuss how models were 
trained and evaluated to predict tutor generalisation and tutor specification. Due to the 
small data size, we consider these models to only offer recommendations of when it 
might be best for a computer tutor to generalise or specify. 

3 Features 

From the data in our corpus, we identified features that are either easily extracted or 
readily available from a fully-automated dialogue-based tutoring system. Similar features 
have been used in previous work on emotion detection in tutorial dialogue systems 
(D’Mello and Graesser, 2006), determining hint interactivity (Arroyo et al., 2000), and 
research on determining when a tutor should elicit information from the student or give 
them information (Chi, 2009). The features we identified were partitioned into three sets 
based on the source of the feature: student, problem, and reflection dialogue. This 
allowed us to explore not only which features are useful, but also which sources are most 
useful for predicting tutor generalisation or specification. 

We performed a median split on most of the numeric features for ease of interpreting 
the decision trees. Table 1 shows the range and median for all numeric features and the 
set of values for non-numeric features. Features which have been median-split are 
indicated by a ‘Y’ in the binned column. 
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Table 1 Information on feature values 

Set Feature Low Median High Binned Non-numeric 
values 

Student Gender - - - N Female, male 
PreQualScore 0.30 0.70 0.81 Y 
PreQuantScore 0.00 0.33 0.78 Y 

Problem NextStepHelp 0 3 52 Y  
WhatsWrongHelp 0 3 43 Y  
UnsolicitedHelp 0 4 27 Y  

NumErr 0 13 72 Y  
NumCorr 0 19 60 Y 

NumEntries 0 22 86 Y  
CorrAns 0 1 3 Y  

Time2SolveNorm 0.08 0.94 3.06 Y  
Reflection RQPosition 0.125 0.60 1.0 N  

PrevRQLength 1 2 33 N  
Time2AnsNorm 0.00 0.85 136.50 Y  

TurnPosition 1 11 56 N  
StuWordCount 0.00 6.00 88.00 Y  
DomainWord% 0.00 0.08 3.00 Y  
AvgKCScore 0.00 0.50 1.00 Y  

CorrectCumulative 0.00 0.74 1.00 Y  
CorrectPrevRQ 0.00 1.00 1.00 Y  

CorrectRQCumulative 0.00 0.50 1.00 Y  
CorrectLast10 0.00 0.75 1.00 Y  

3.1 Student features 

The features in this set represent information about the student before tutoring began. 
Their values remain constant over the course of the entire tutoring session. Below are the 
three features in this set. 

• Gender: Female or male. 

• PreQualScore: Score on the qualitative part of the pretest (median split: high, low). 

• PreQuantScore: Score on the quantitative part of the pretest (high, low). 

3.2 Problem features 

The features in this set come from the problem-solving sessions in Andes. The values are 
specific to each problem and subsequent reflection dialogue; they are reset at the start of 
the next problem. Since problem solving completes before the reflection discussion 
begins, the values remain constant for all reflection dialogues for that problem. Tutors 
observed the students solving the problems in Andes and so would have been aware of 
the approximate values of these variables. Future ITSs would also have access to this 
information in real time. 
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• NextStepHelp: How often student requested help from Andes on what step to do next 
(high, low). 

• WhatsWrongHelp: How often student asked Andes what was wrong with their work 
(high, low). 

• UnsolicitedHelp: How often Andes offered an unsolicited hint (high, low). 

• NumErr: Number of incorrect student entries during problem-solving process (high, 
low). 

• NumCorr: Number of correct student entries during problem-solving process (high, 
low). 

• NumEntries: Total number of student entries in the interface (sum of NumErr and 
NumCorr) (high, low). 

• CorrAns: Total number of correct answers entered (not intermediate entries) by 
student (high, low). 

• Time2SolveNorm: Time (in seconds) student spent solving the problem, divided by 
the average time spent solving this problem by the students in the other conditions of 
the study (slow, fast). 

3.3 Reflection features 

The features in this set come from the dialogues for each of the reflection questions, so 
the values are specific to the dialogue for each reflection question. Since we will be 
predicting generalisation and specification during the reflection dialogues, some of these 
values will change over the course of each reflection dialogue. 

• RQPosition: Which reflection question the student is currently discussing for the 
particular problem, normalised by the number of reflection questions for the 
problem. We normalise because problems have different numbers of reflection 
questions; normalising better reflects a student’s progress through the post-problem 
dialogue. 

• PrevRQLength: Number of turns in the previous reflection question’s dialogue. 

• Time2AnsNorm: How long (in seconds) it took for the student to respond to the 
tutor’s previous message, normalised by the number of characters in the student’s 
response (slow, fast). 

• TurnPosition: Position in the reflection question dialogue. 

• StuWordCount: Count of words in the student’s preceding turn (high, low). 

• DomainWord%: Of all words in student’s preceding turn, the percentage that are 
physics domain words (from: http://scienceworld.wolfram.com/physics/letters/) 
(high, low). 

• AvgKCScore: For the KCs required to correctly answer the reflection question, the 
student’s average score on the pretest problems also requiring those KCs (high, low). 
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• CorrectCumulative: For all preceding turns, percent of correct student responses 
divided by sum of correct and incorrect student responses (high, low). 

• CorrectPrevRQ: From only the immediately preceding reflection dialogue, percent 
of correct student responses divided by sum of correct and incorrect student 
responses (high, low). 

• CorrectRQCumulative: From all preceding turns in the current reflection dialogue, 
percent of correct student responses divided by sum of correct and incorrect student 
responses (high, low). 

• CorrectLast10: From the last ten turns, percent of correct student responses divided 
by sum of correct and incorrect student responses (high, low). 

4 Machine learning 

As mentioned above, we are interested in using this corpus to predict when a  
computer-based tutor might generalise in a post-problem reflective dialogue and when 
such a tutor might specify. Thus, we will be building from this corpus two models, one to 
predict when the human tutors generalised and the other to predict when the human tutors 
specified. The tags from Katz and Albacete (2013) were done on segments of a turn. In 
this work, we predict at the turn level, so if any segment of a turn was labelled as 
generalisation or specification, then the turn was labelled as generalisation or 
specification. Since predictions are at the turn level, the segment-level tags were 
propagated to the turn level. Both of these prediction tasks are binary classifications, with 
yes meaning that the tutor provided a generalisation or specification from the student’s 
turn preceding the turn we are attempting to predict and no meaning that the tutor did not. 

Since the original data has a large bias towards not generalising and towards not 
specifying, we use WEKA’s CostSensitiveClassifier (Hall et al., 2009) to increase the 
cost of misclassifying yes as no. We choose this method over others for handling bias, 
such as downsampling, because this method allows us to use the full data set for machine 
learning. The machine learning algorithm used to perform the classification is J48 
Decision Trees, WEKA’s implementation of the C4.5 decision tree algorithm. We chose 
this algorithm because it allows us to easily see relationships between features used in the 
trees. The default settings for the decision tree were modified to have a confidence factor 
of 0.125 and minimum number of instances in the leaf nodes to 60. Both settings were 
modified to encourage shorter trees, to ease interpretation of relationships. There was no 
significant difference between these trees and the trees using the default settings. 

We compare the performance of our models to a majority class baseline. The majority 
class baseline for both tasks predicts no. For each model, we performed  
leave-one-student-out cross-validation. As stated earlier, since there were not many 
tutors, the models learned only indicate when a computer tutor may want to change the 
level of abstraction. We leave as future work studying a larger corpus. 

4.1 Single-feature trees 

We begin by examining how useful each feature is in isolation. For each classification 
task, we trained one decision tree for each of the features listed in Section 3. As we are 
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not specifically interested in optimising for precision or recall, we rank performance by 
F1. In this context, ‘precision’ for generalisation refers to how many true tutor 
generalisations there were out of all the tutor turns the model predicted were 
generalisations. ‘Recall’ for generalisation is how many generalisations were correctly 
identified by the model, out of all generalisation tutor turns in the corpus. Similar 
definitions are used for specification. 

Since the data is heavily skewed and we are interested in the minority class, we report 
the precision, recall, and F1 for the class of interest (yes). Table 2 shows the baseline and 
each of the models. 

Others have suggested looking at the unweighted average precision, recall, and F1 
when evaluating the performance of models in situations with a large skew in the classes 
(Schuller et al., 2009). These metrics consider both classes in the results, rather than just 
the class of interest. Thus, we also present the unweighted average for the baseline and 
each of the models in Table 3. Although we will use Table 2 for selecting the best 
models, we obtained similar results from the unweighted average evaluation method. 

In this section, we focus solely on the single feature models. 

4.1.1 Generalisation 

Two of the models using only Student features – Gender and PreQualScore – are 
significantly better than baseline for F1. Of the two, PreQualScore performs significantly 
better. Since this feature represents how well the student performed on the qualitative, or 
conceptual, questions on the pretest, it is a good indication of how well the student 
understood the concept. The decision tree indicates that when the PreQualScore is low, 
predict generalisation, and when it is high, predict no generalisation. This suggests that 
tutors tend to generalise when students have poor conceptual understanding. Perhaps 
tutors are showing how instantiation of one or more concepts in the current problem 
connects to a more general physics concept. Since this feature is constant throughout an 
entire tutoring session, this model will make the same prediction for all tutor turns. That 
is, it adapts to the student’s incoming qualitative knowledge, but to nothing during 
tutoring, despite making predictions at the turn level. Therefore, it will make the same 
prediction for each tutor turn in the dialogue. 

Of the eight models using only one Problem feature each, five performed 
significantly better than baseline for F1. The best feature in this group appears to be 
UnsolicitedHelp, which is a median split of the count of the number of times Andes 
provided unsolicited help; however, UnsolicitedHelp is not significantly better than 
Time2SolveNorm. The decision tree indicates that when UnsolicitedHelp is high, human 
tutors tended to generalise, and when it is low, human tutors tended to not generalise. 
Receiving unsolicited help on the steps needed to solve a physics problem indicates that 
the student does not know how to solve it. Therefore, the human tutor may have been 
trying to explain general concepts to the student so that the knowledge can transfer to 
another problem that uses the same concepts. Since this feature is constant throughout the 
reflection dialogues for a given problem, this model will make the same prediction for all 
tutor turns within those reflection dialogues. Therefore, it adapts to students’ performance 
during problem solving, but to nothing during the discussions, despite making predictions 
at the turn level. 
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Table 2 Comparing feature sets across the yes metrics for both generalisation and specification 
classification tasks 

  
Generalisation  Specification 

Precision Recall F1  Precision Recall F1 
Baseline 0.065 0.461 0.113  0.061 0.493 0.108 

Si
ng

le
 fe

at
ur

es
 

Student        
 Gender 0.068 0.747 0.125  0.071 0.863 0.13 
 PreQualScore 0.079 0.68 0.142  0.067 0.583 0.12 
 PreQuantScore 0.064 0.496 0.113  0.058 0.478 0.104 
Problem        
 NextStepHelp 0.071 0.614 0.128  0.058 0.538 0.105 
 WhatsWrongHelp 0.062 0.5 0.11  0.058 0.529 0.104 
 UnsolicitedHelp 0.076 0.631 0.135  0.068 0.614 0.123 
 NumErr 0.059 0.47 0.105  0.072 0.629 0.129 
 NumCorr 0.071 0.546 0.125  0.06 0.487 0.106 
 NumEntries 0.068 0.535 0.121  0.074 0.629 0.132 
 CorrAns 0.071 0.672 0.129  0.068 0.069 0.124 
 Time2SolveNorm 0.074 0.582 0.131  0.056 0.463 0.1 
Reflection        
 RQPosition 0.079 0.535 0.138  0.055 0.487 0.099 
 PrevRQLength 0.062 0.382 0.107  0.061 0.672 0.111 
 Time2AnsNorm 0.1 0.745 0.176  0.086 0.689 0.153 
 TurnPosition 0.061 0.517 0.11  0.067 0.518 0.119 
 StuWordCount 0.06 0.452 0.105  0.057 0.436 0.101 
 DomainWord% 0.064 0.495 0.113  0.068 0.587 0.121 
 AvgKCScore 0.069 0.709 0.126  0.057 0.335 0.097 
 CorrectCumulative 0.061 0.457 0.108  0.066 0.51 0.118 
 CorrectPrevRQ 0.075 0.505 0.131  0.056 0.468 0.101 
 CorrectRQCumulative 0.063 0.427 0.11  0.053 0.411 0.093 
 CorrectLast10 0.071 0.535 0.126  0.056 0.44 0.099 

 Feature sets        
  Student 0.077 0.586 0.136  0.082 0.725 0.147 
  Problem 0.068 0.427 0.117  0.073 0.641 0.131 
  Reflection 0.108 0.597 0.182  0.091 0.518 0.156 
 Aggregated feature sets        
  StudentProblem 0.076 0.466 0.13  0.09 0.641 0.158 
  StudentReflection 0.108 0.609 0.184  0.092 0.555 0.158 
  ProblemReflection 0.1 0.587 0.171  0.094 0.491 0.158 
  Overall 0.103 0.615 0.176  0.088 0.495 0.149 

Notes: Italicised values indicate results significantly better than baseline (p < 0:05). All 
other values are not significantly different from the baseline. The underlined 
values are the greatest in that column. 
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Table 3 Comparing feature sets across the unweighted average metrics for both generalisation 
and specification classification tasks 

  
Generalisation  Specification 

Precision Recall F1  Precision Recall F1 
Baseline 0.497 0.491 0.494  0.497 0.496 0.497 

Si
ng

le
 fe

at
ur

es
 

Student        
 Gender 0.504 0.511 0.508  0.517 0.551 0.534 
 PreQualScore 0.514 0.555 0.534  0.505 0.521 0.513 
 PreQuantScore 0.497 0.488 0.492  0.495 0.481 0.488 
Problem        
 NextStepHelp 0.505 0.519 0.512  0.495 0.480 0.487 
 WhatsWrongHelp 0.495 0.48 0.487  0.495 0.482 0.489 
 UnsolicitedHelp 0.510 0.538 0.524  0.507 0.528 0.517 
 NumErr 0.492 0.471 0.482  0.510 0.542 0.526 
 NumCorr 0.503 0.512 0.507  0.498 0.493 0.496 
 NumEntries 0.501 0.504 0.503  0.512 0.550 0.530 
 CorrAns 0.506 0.524 0.515  0.507 0.527 0.517 
 Time2SolveNorm 0.507 0.529 0.518  0.493 0.472 0.482 
Reflection        
 RQPosition 0.513 0.550 0.531  0.491 0.470 0.480 
 Time2AnsNorm 0.533 0.631 0.578  0.524 0.601 0.560 
 TurnPosition 0.496 0.486 0.491  0.503 0.514 0.509 
 StuWordCount 0.492 0.474 0.483  0.495 0.481 0.488 
 DomainWord% 0.495 0.481 0.488  0.506 0.525 0.516 
 AvgKCScore 0.505 0.516 0.511  0.494 0.481 0.487 
 CorrectCumulative 0.493 0.474 0.483  0.504 0.517 0.510 
 CorrectPrevRQ 0.507 0.528 0.517  0.492 0.471 0.481 
 CorrectRQCumulative 0.497 0.487 0.492  0.491 0.462 0.476 
 CorrectLast10 0.504 0.516 0.510  0.492 0.469 0.480 

 Feature sets        
  Student 0.510 0.523 0.524  0.522 0.592 0.555 
  Problem 0.502 0.509 0.506  0.514 0.557 0.534 
  Reflection 0.526 0.598 0.560  0.513 0.553 0.532 
 Aggregated feature sets        
  StudentProblem 0.506 0.523 0.514  0.525 0.606 0.563 
  StudentReflection 0.528 0.606 0.564  0.519 0.578 0.547 
  ProblemReflection 0.521 0.579 0.549  0.515 0.560 0.537 
  Overall 0.521 0.579 0.548  0.516 0.565 0.540 

Notes: Italicised values indicate results significantly better than baseline (p < 0:05). All 
other values are not significantly different from the baseline. The underlined 
values are the greatest in that column. 
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Of the 11 models using only one Reflection feature each, five performed significantly 
better than baseline. Time2AnsNorm performed significantly better than the other four 
and the decision tree indicates that when the student was fast to respond, the tutor would 
generalise. As we will see below, the tutor also tends to specify when the student 
responds quickly, so interpretation of this decision tree is unclear. 

Overall, it appears that tutors tend to generalise when students display poor 
understanding of a concept, in the case at hand. 

4.1.2 Specification 

Two of the three models using only Student features – Gender and PreQualScore – are 
significantly better than baseline. Of the two, Gender performs better, although not 
statistically significantly, and its tree indicates that the tutors tend to specify when the 
student is female. It is unclear how gender is involved in the tutor’s decision to specify. 
The tutors were aware of the gender of the student because they chatted with the students 
before and after tutoring. It is possible that Gender represents an attribute or set of 
attributes about students that could influence a tutor’s decision to specify, such as 
incoming physics knowledge. We examined whether there was a significant difference 
between females and males on pretest score, quantitative-only pretest scores, and 
qualitative-only pretest scores, and found that there was no significant difference on any 
of these scores (p ≥ 0.92). In future work, we plan on examining other potential gender 
differences, such as problem-solving behaviour or dialogue differences (e.g., word 
choice). It may also be the case that the chatting before and after tutoring sessions led to 
tutor-student rapport. The tutors may have been more likely to go into more detail with 
students they had better rapport with. 

Four of the eight models using only one Problem feature performed significantly 
better than baseline. Of these five, NumEntries performed best, although not significantly 
better than NumErr. NumEntries’ decision tree indicates that when the student had many 
entries in Andes, the tutor was more likely to specify. More entries in Andes – vectors, 
scalars, and equations – tended to indicate students were trying whatever they could to 
solve the problem, usually on their own. So, perhaps the tutor specified to give the 
student very specific explanations and instructions to help the student apply the abstract 
physics concepts to the specific situation presented in the problem at hand. The NumErr 
tree supports this interpretation. For students with an above-median number of errors 
during problem-solving, the tutors may specify more. 

Of the 11 models using only one reflection feature each, five performed significantly 
better than baseline. Of these five, Time2AnsNorm performed best; its decision tree 
indicates that when the student was fast to respond, the tutor would specify. Since the 
tutor also tends to generalise in these cases, it is not clear how a computer tutor can use 
this feature to decide whether to generalise or specify. Although it is possible for the 
human tutor to have generalised and specified in the same turn, our corpus shows no 
instances of the tutor doing this. 

Overall, interpretation of the one-feature specification trees is generally not clear. 
From the Problem feature set, it appears that the tutor may specify to help the student 
apply the physics concepts to the specific situation presented in the problem. 
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4.2 Best-performing trees 

Having examined how important individual features are, we now examine the  
best-performing trees for each classification task, where “best” is determined by  
how well the models performed on the yes class. While the best trees perform 
significantly better than baseline, their performance is still low. Recall that there is a large 
bias towards not generalising and towards not specifying. For the work presented  
here, we are interested in testing the feasibility of the classification tasks and in 
identifying patterns that predict tutor generalisation and specification. In future  
work, we propose improving classification performance. However, when looking at 
Table 3, which considers performance on both classes, we see that the numbers do 
improve. 

4.2.1 Generalisation 

For predicting when the tutors tended to generalise, the best model is the 
StudentReflection model, which had the highest F1, although not significantly different 
than Time2AnsNorm, Reflection, ProblemReflection, or Overall. The StudentReflection 
model can be seen in Figure 2. 

If the student is slow to respond and is working on an early reflection dialogue 
(RQPosition <= 0.143), then the tutor will tend to generalise. Being slow to respond 
could indicate that the student does not have all the necessary knowledge to answer the 
question or is learning to link the knowledge required to answer the question. Hence, the 
answer provided by the student may be incomplete, not quite coherent, or too specific to 
the problem at hand. Therefore the tutor may try to complete the given answer or explain 
it at a slightly higher level. 

If the student responds quickly, then the tutors tend to generalise for a variety of 
reasons. 

First, there are instances of when the tutor may generalise when the student appears to 
be showing evidence of doing well. We see that when the student responds fast, 
CorrectRQCumulative is high, and either CorrectPrevRQ is high or PreQuantScore is 
high. 

Second, if the student has been doing well overall (PreQualScore = high and 
CorrectCumulative = high), but is struggling with the current dialogue 
(CorrectRQCumulative = low), then the tutors tend to generalise. The tutor might  
do this to connect the details of this dialogue to the concepts in previous dialogues or 
problems. 

Finally, the tutor may also generalise if the student appears to be struggling.  
When the student is getting a lot wrong in the current dialogue (CorrectRQCumulative = 
low), and performed poorly on the pretest’s qualitative questions (PreQualScore = low), 
then the tutors tend to generalise. Here, the tutor may be trying to explain concepts  
before going on to the specifics of the reflection question. Another possibility is  
that the tutor is explaining the general line of reasoning before explaining each specific 
step in it. 
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Figure 2 Decision tree to predict generalisation using the combined feature sets of student and 
reflection 

 

 

4.2.2 Specification 

For predicting when the tutor may specify, the best model is the one that uses the Student 
and Problem feature sets, although it is not significantly different than Time2AnsNorm, 
Student, Reflection, StudentReflection, ProblemReflection, or Overall. The decision tree 
that is learned using these features can be seen in Figure 3. 

We see that when the student shows evidence of understanding, the tutor may specify 
more often. This occurs for males when their qualitative pretest scores are high and have 
many correct entries in Andes. This occurs for females when their qualitative pretest 
scores are high, have many correct answers in Andes, and did not have many What’s 
wrong? help requests in Andes. This may be happening when students are doing well and 
show understanding of the concepts; then the tutor may start focusing on details so that 
students’ answers are complete and precise. 

When students show evidence of struggling with problem solving, the tutors tend to 
specify. When females asked many “what’s wrong” questions during problem solving 
(WhatsWrongHelp = high) and had a low score on the quantitative portion of the pretest, 
then the tutor specified. Or, the tutor may have been trying to explain concepts by using 
specific examples from the problem. It could also be the case that because the student did 
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not show much mathematical ability (low score on the quantitative portion of the pretest) 
that the tutor may be asking the student to instantiate all equations that are relevant to the 
problem at hand. 

Figure 3 Decision tree to predict specification using the combined feature sets of student and 
problem 

 

5 Discussion 

This work builds upon previous work which showed that particular types of 
generalisation and specification discourse relations predict learning (Katz and Albacete, 
2013). The goal of the current analysis was to determine whether features and feature 
groups that can be automatically extracted from Andes tutoring logs and reflection 
dialogue logs may be useful for predicting whether a tutor may generalise or specify. We 
examined a corpus of post-problem human-human tutorial dialogues of conceptual 
physics to find instances of when the tutor would generalise or specify over the student’s 
preceding turn. We then used decision trees both to identify useful features and feature 
sets, and to identify patterns between features and tutor generalisation and specification. 
Finally, we offered interpretations on why the tutor may have followed these patterns. 

The most important feature for both the generalisation task and the specification task 
was how long it took the student to respond to the tutor’s question during reflection. In 
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both cases, the longer the student took, the more likely the tutor was to generalise and the 
more likely they were to specify. Since the models predict that a computer tutor should 
specify and generalise on the same turn, but we do not find any instances of these in the 
data, this feature alone is not enough to model when the tutor should specify and 
generalise. So, we explored more complex models that used multiple features. 

For the generalisation task, we find that the model with the highest F1 uses a 
combination of the student and reflection features. The tutor generalised for students 
struggling as well as students not struggling. The tutor may wish to generalise for 
struggling students to introduce general concepts when the student is trying to discuss 
specifics of a problem. For students not struggling, the tutor may want the student to talk 
about general concepts because thinking in terms of general concepts may help the 
knowledge transfer to future problems or reflection questions. 

For the specification task, we find that the best model uses both the Student and 
Problem feature sets. As with generalisation, we found that tutors specify for struggling 
students and for students not struggling. When a student is struggling, the tutor may 
speak concretely to ground the discussion in a specific situation to help the student 
understand the concepts. When students show evidence of understanding, the tutor 
appears to test their knowledge or try to prepare them for upcoming problems by asking 
specification questions. It is also possible that the tutor specifies because the student 
understands the basic concepts and is ready to discuss more details about those concepts. 

We also found that gender is an important feature, particularly for the specification 
task, but it is unclear why. The tutor was aware of the student’s gender, so the tutor may 
have unknowingly varied behaviour based on the student’s gender. Another possibility is 
that males and females think about or speak about physics differently. For example, 
males may speak in more specific terms, causing the tutor to more often generalise. To 
investigate the latter possibility on the current corpus, correlational analysis should be 
performed between gender and the specificity of student turns. 

6 Future work 

Augmenting a computer tutor to automatically generalise or specify over the student’s 
preceding turn presents many interesting research challenges. While many models in this 
paper performed significantly better than baseline, there is still much room for 
improvement in learning models. Therefore, one challenge is improving classification. In 
this paper, we chose decision trees because they allow for easy interpretation of feature 
relationships, but other classification algorithms may provide significantly better 
classification results. Additionally, other features, perhaps those that are not easily 
obtainable from an automatic computer tutor, such as other dialogue relations, may 
improve classification performance. Furthermore, different types of generalisation and 
specification may have different learning models. For example, predicting part:whole 
relations might be different from predicting instance:abstract relations. Instead of 
learning one model for generalisation and one for specification, better performance might 
be achieved by learning one model for each type. These are each avenues for improving 
classification performance. 

Another challenge is to identify what student spans within a dialogue turn to 
generalise or specify over. The analysis in this paper focused on identifying whether or 
not the tutor should generalise or specify. But, to augment a computer tutor to 
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automatically generalise or specify, it must be able to identify the correct span of the 
student’s turn. Therefore, an additional classifier must be developed to identify those 
spans. 

Once the span of the student’s turn is identified, the tutor must then generalise or 
specify over that span. While lexical databases, such as WordNet (Fellbaum, 2010), 
provide hypernym relations, they contain scientific inaccuracies (Lipschultz and Litman, 
2010). Additionally, the lexical database would provide lexical changes in abstraction, 
but creating semantic changes in abstraction will require additional work. Finally, it is not 
yet known how many levels of abstraction the tutor changed, nor why the tutor changed 
that many levels. Therefore, a classifier must be developed to determine how many levels 
of abstraction to change. Additionally, a semantic hierarchy should be developed. 

As noted above, the tutor specified based on gender, but it is unclear why gender was 
influential in the tutor’s decision. We suspect that the tutor did not rely on gender, but 
rather other variables which correlate with gender that we did not consider. In this work, 
we tested whether gender correlated with pretest scores and found that they did not. In 
future work, we propose testing other relationships, such as problem-solving behaviour, 
dialogue acts, or other measures of incoming knowledge. 

This paper explored tutor changes in abstraction because it is easier to control in a 
computer tutoring system than student shifts in level of abstraction. However, performing 
similar analysis on student changes can offer insights into when a student might 
generalise or specify. Findings from that analysis can then be used in a computer tutoring 
system to encourage future students to generalise or specify. Therefore, we propose as 
future work developing models of student generalisation and specification. 

Finally, the research presented in this paper used a small group of tutors. Conclusions 
drawn from this sample only indicate when a computer-based tutor may want to 
generalise. Studying a larger group of skilled tutors’ behaviour to determine when they 
tend to generalise and specialise can provide a better idea of when it is best for a 
computer-based tutor to generalise or specialise. 

Acknowledgements 

The authors would like to thank the other members of the Rimac project team for their 
contributions: Michael Ford, Scott Silliman, Christine Wilson, Stefani Allegretti, and 
Kevin Krost. This research was supported by the Institute of Education Sciences, US 
Department of Education, through Grant R305A10063 to the University of Pittsburgh. 
The opinions expressed are those of the authors and do not represent the views of the 
Institute or the US Department of Education. 

References 
Aist, G., Kort, B., Reilly, R., Mostow, J. and Picard, R. (2002) ‘Experimentally augmenting an 

intelligent tutoring system with human-supplied capabilities: adding human-provided 
emotional scaffolding to an automated reading tutor that listens’, Proceedings of the 
Intelligent Tutoring Systems Conference 2002 Workshop on Empirical Methods for Tutorial 
Dialogue Systems, pp.483–490. 

Arroyo, I., Beck, J., Woolf, B., Beal, C. and Schultz, K. (2000) Macroadapting animalwatch to 
gender and cognitive differences with respect to hint interactivity and symbolism’, in 



   

 

   

   
 

   

   

 

   

    Predicting semantic changes in abstraction in tutor responses to students 301    
 

    
 
 

   

   
 

   

   

 

   

       
 

Gauthier, G., Frasson, C. and Van Lehn, K. (Eds.): Intelligent Tutoring Systems, Volume of 
LNCS, pp.574–583, Springer, Berlin/Heidelberg. 

Baker, R., Corbett, A., Koedinger, K., Evenson, S., Roll, I., Wagner, A., Naim, M., Raspat, J., 
Baker, D. and Beck, J. (2006) ‘Adapting to when students game an intelligent tutoring 
system’, Proceedings of the Intelligent Tutoring Systems Conference, Springer, pp.392–401. 

Baker, R.S., Corbett, A.T. and Koedinger, K.R. (2004a) ‘Detecting student misuse of intelligent 
tutoring systems’, Proceedings of the Intelligent Tutoring Systems Conference, Springer, 
pp.54–76. 

Baker, R.S., Corbett, A.T., Koedinger, K.R. and Wagner, A.Z. (2004b) ‘Off-task behavior in the 
cognitive tutor classroom: when students game the system’, Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems, ACM, pp.383–390. 

Beck, J.E. (2004) ‘Using response times to model student disengagement’, Proceedings of the 
ITS2004 Workshop on Social and Emotional Intelligence in Learning Environments,  
pp.13–20. 

Bloom, B.S. (1984) ‘The 2 Sigma problem: the search for methods of group instruction as effective 
as one-to-one tutoring’, Educational Researcher, Vol. 13, No. 6, pp.4–16. 

Boyer, K., Phillips, R., Ingram, A., Ha, E., Wallis, M., Vouk, M. and Lester, J. (2010) 
‘Characterizing the effectiveness of tutorial dialogue with hidden Markov models’, 
Proceedings of the Intelligent Tutoring Systems Conference, pp.55–64. 

Chi, M. (2009) Do Micro-Level Tutorial Decisions Matter: Applying Reinforcement Learning to 
Induce Pedagogical Tutorial Tactics, PhD dissertation, University of Pittsburgh, Intelligent 
Systems Program, November. 

Chi, M., VanLehn, K. and Litman, D. (2010) ‘Do micro-level tutorial decisions matter: applying 
reinforcement learning to induce pedagogical tutorial tactics’, Proceedings of the Intelligent 
Tutoring Systems Conference, Springer, pp.224–234. 

Chi, M., VanLehn, K., Litman, D. and Jordan, P. (2011a) ‘An evaluation of pedagogical tutorial 
tactics for a natural language tutoring system: a reinforcement learning approach’, 
International Journal of Artificial Intelligence in Education, Vol. 21, No. 2, pp.83–113. 

Chi, M., VanLehn, K., Litman, D. and Jordan, P. (2011b) ‘Empirically evaluating the application of 
reinforcement learning to the induction of effective and adaptive pedagogical strategies’, 
Proceedings of the User Modelling and User-Adapted Interaction Conference, Vol. 21,  
Nos. 1–2, pp.137–180. 

Chi, M.T.H., Roy, M. and Hausmann, R.G.M. (2008) ‘Observing tutorial dialogues collaboratively: 
insights about human tutoring effectiveness from vicarious learning’, Cognitive Science,  
Vol. 32, No. 2, pp.301–341. 

Chi, M.T.H., Siler, S.A., Jeong, H., Yamauchi, T. and Hausmann, R.G. (2001) ‘Learning from 
human tutoring’, Cognitive Science, Vol. 25, No. 4, pp.471–533. 

Corbett, A.T. and Anderson, J.R. (1994) ‘Knowledge tracing: modeling the acquisition of 
procedural knowledge’, Proceedings of the User Modelling and User-Adapted Interaction 
Conference, Vol. 4, No. 4, pp.253–278. 

D’Mello, S. and Graesser, A. (2006) ‘Affect detection from human-computer dialogue with an 
intelligent tutoring system’, Intelligent Virtual Agents, pp.54–67, Springer. 

D’Mello, S.K. and Graesser, A. (2010) ‘Multimodal semi-automated affect detection from 
conversational cues, gross body language, and facial features’, User Modeling and  
User-Adapted Interaction, Vol. 20, No. 2, pp.147–187. 

Dennis, M., Masthoff, J. and Mellish, C. (2012) ‘Adapting performance feedback to a learner’s 
conscientiousness’, Proceedings of the User Modelling and User-Adapted Interaction 
Conference, pp.297–302. 

Drummond, J. and Litman, D. (2010) ‘In the zone: towards detecting student zoning out using 
supervised machine learning’, Intelligent Tutoring Systems, pp.306–308, Springer. 

Fellbaum, C. (2010) ‘Wordnet’, Theory and Applications of Ontology: Computer Applications, 
Vol. 38, No. 11, pp.231–243. 



   

 

   

   
 

   

   

 

   

   302 M. Lipschultz et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Forbes-Riley, K. and Litman, D. (2007) ‘Investigating human tutor responses to student uncertainty 
for adaptive system development’, Proceedings of the 2nd International Conference on 
Affective Computing and Intelligent Interaction, pp.678–689. 

Forbes-Riley, K. and Litman, D. (2009) ‘Adapting to student uncertainty improves tutoring 
dialogues’, Proceeding of the 2009 conference on Artificial Intelligence in Education: 
Building Learning Systems that Care: From Knowledge Representation to Affective 
Modelling, pp.33–40. 

Forbes-Riley, K. and Litman, D. (2011) ‘Designing and evaluating a wizarded uncertainty-adaptive 
spoken dialogue tutoring system’, Computer Speech & Language, Vol. 25, No. 1, pp.105–126. 

Forbes-Riley, K. and Litman, D. (2012) ‘Adapting to multiple affective states in spoken dialogue’, 
Proceedings of the 13th Annual Meeting of the Special Interest Group on Discourse and 
Dialogue (SIGDIAL), pp.217–226. 

Forbes-Riley, K., Litman, D., Friedberg, H. and Drummond, J. (2012) ‘Intrinsic and extrinsic 
evaluation of an automatic user disengagement detector for an uncertainty-adaptive spoken 
dialogue system’, Proc. NAACL-HLT. 

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I.H. (2009) ‘The 
WEKA data mining software: an update’, ACM SIGKDD Explorations Newsletter, Vol. 11, 
No. 1, pp.10–18. 

Halliday, M.A.K. and Hasan, R. (1976) Cohesion in English, Longman, London. 
Jordan, P., Albacete, P., Ford, M.J., Katz, S. and Lipschultz, M. (2013a) ‘Eliciting student 

explanations during tutorial dialogue for the purpose of providing formative feedback’, 
Artificial Intelligence in Education Workshop on Formative Feedback in Interactive Learning 
Environments. 

Jordan, P., Albacete, P., Ford, M.J., Katz, S., Lipschultz, M., Litman, D., Silliman, S. and  
Wilson, C. (2013b) ‘The Rimac tutor – a simulation of the highly interactive nature of human 
tutorial dialogue: an interactive event’, Artificial Intelligence in Education Conference 
(AIED). 

Katz, S. and Albacete, P. (2013) ‘A tutoring system that simulates the highly interactive nature of 
human tutoring’, Journal of Educational Psychology, Vol. 105, No. 4, Special issue on 
Advanced Learning Technologies, pp.1126–1141. 

Katz, S., Albacete, P., Ford, M.J., Jordan, P., Lipschultz, M., Litman, D., Silliman, S. and  
Wilson, C. (2013) ‘Pilot test of a natural-language tutoring system for physics that simulates 
the highly interactive nature of human tutoring’, Artificial Intelligence in Education 
Conference (AIED). 

Katz, S., Allbritton, D. and Connelly, J. (2003) ‘Going beyond the problem given: How human 
tutors use post-solution discussions to support transfer’, International Journal of Artificial 
Intelligence in Education, Vol. 13, No. 1, pp.79–116. 

Lipschultz, M. and Litman, D. (2010) ‘Correcting scientific knowledge in a general-purpose 
ontology’, 10th International Conference on Intelligent Tutoring Systems (ITS). 

Lipschultz, M., Litman, D., Jordan, P. and Katz, S. (2011) ‘Predicting changes in level of 
abstraction in tutor responses to students’, Proceedings 24th International FLAIRS (Florida 
Artificial Intelligence Research Society) Conference. 

Mann, W.C. and Thompson, S. (1988) ‘Rhetorical structure theory: toward a functional theory of 
text organization’, Text, Vol. 8, No. 3, pp.243–281. 

Pavlik, P.I., Cen, H. and Koedinger, K.R. (2009) ‘Performance factors analysis–a new alternative to 
knowledge tracing’, Proceedings of the 2009 Conference on Artificial Intelligence in 
Education: Building Learning Systems that Care: From Knowledge Representation to 
Affective Modelling, pp.531–538, IOS Press. 

Pon-Barry, H., Schultz, K., Bratt, E.O., Clark, B. and Peters, S. (2006) ‘Responding to student 
uncertainty in spoken tutorial dialogue systems’, International Journal of Artificial 
Intelligence in Education, Vol. 16, No. 2, pp.171–194. 



   

 

   

   
 

   

   

 

   

    Predicting semantic changes in abstraction in tutor responses to students 303    
 

    
 
 

   

   
 

   

   

 

   

       
 

Schuller, B., Steidl, S. and Batliner, A. (2009) ‘The interspeech 2009 emotion challenge’, Tenth 
Annual Conference of the International Speech Communication Association. 

Shih, B., Koedinger, K.R. and Scheines, R. (2008) ‘A response time model for bottom-out hints as 
worked examples’, Proceedings of the Educational Data Mining Conference, p.117. 

VanLehn, K., Graesser, A.C., Jackson, G.T., Jordan, P., Olney, A. and Rosé, C.P. (2007) ‘When are 
tutorial dialogues more effective than reading?’, Cognitive Science, Vol. 31, No. 1, pp.3–62. 

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J.A., Shelby, R., Taylor, L., Treacy, D., Weinstein, 
A. and Wintersgill, M. (2005) ‘The Andes physics tutoring system: lessons learned’, 
International Journal of Artificial Intelligence in Education, Vol. 15, No. 3, pp.147–204. 

VanLehn, K., Siler, S., Murray, C., Yamauchi, T. and Baggett, W.B. (2003) ‘Why do only some 
events cause learning during human tutoring?’, Cognition and Instruction, Vol. 21, No. 3, 
pp.209–249. 

Walonoski, J. and Heffernan, N. (2006) ‘Detection and analysis of off-task gaming behavior in 
intelligent tutoring systems’, Proceedings of the Intelligent Tutoring Systems Conference, 
Springer, pp.382–391. 

Ward, A. and Litman, D. (2007) ‘Automatically measuring lexical and acoustic/prosodic 
convergence in tutorial dialog corpora’, Proceedings of the SLaTE Workshop on Speech and 
Language Technology in Education. 

Ward, A., Connelly, J., Katz, S., Litman, D. and Wilson, C. (2009) ‘Cohesion, semantics and 
learning in reflective dialog’, Proc. AIED Workshop. 

Woolf, B., Dragon, T., Arroyo, I., Cooper, D., Burleson, W. and Muldner, K. (2009) ‘Recognizing 
and responding to student affect’, in Jacko, J.A. (Ed.): Human-Computer Interaction. Ambient, 
Ubiquitous and Intelligent Interaction, Volume 5612 of Lecture Notes in Computer Science, 
pp.713–722, Springer, Berlin Heidelberg. 


